AlgoExplorer: a dynamic data structures viewer for Java

Pier Paolo Ciarravano (ppciarravano@gmail.com)

AlgoExplorer : a dynamic data structures viewer for Java

. . t
Pier Paolo Ciarravano
ppciarravano@gmail.com

ABSTRACT

The correct programming of algorithms and data structures
is very important for the execution of a program and it al-
low you to analyze complex algorithms; the visual approach
through animated representation simplifies the study, un-
derstanding and debugging of source code. In this context
the research is called Data Structure and Algorithm Visu-
alization. We present an application called “AlgoEzplorer”
which allows the visualization of data structures that play a
role in the execution of a program in Java. The application
offers an educational approach to understanding the algo-
rithms operations, allowing you to see how objects, handled
by the algorithms, interact with each other and how they
are related and linked. Furthermore, the application allows
an easy visual debugging of algorithms and if the data struc-
tures and variables used accomplish the task set by the pro-
gram.

1. INTRODUCTION

The visual representations are very useful for understanding
the mechanisms and functioning of many types of algorithms
for quickly understand the behavior of them. It is univer-
sally recognized that the graphical display of data structures
and algorithms is a powerful alternative to textual descrip-
tion or verbal explanation: the visualization improves un-
derstanding and it is able to capture the attention of even
better users thus enhancing the educational purposes. The
study and testing of the visualization of data structures and
algorithms begins as early as 1981 with the movie “Sorting
out Sorting” [23] [24] created by Ronald Baeker and there-
after in 1984 was developed BALSA [18], the first system to
create animations of algorithms; there are currently many
well-known algorithm animation [5] and many systems for
displaying runtime, many of which require that programs
are developed implementing some specific rules or libraries.

*AlgoExplorer is released under GNU General Public Li-
cense Version 3(GPLv3)

T Author web site: http://www.larmor.com

In addition to research and development of systems for dis-
playing data structures and algorithms, there was systems
also allow the “Visual Debugging”, these systems therefore
add the ability to inspect the variables at different time of
operation and if the values of variables and the behavior of
the algorithms coincide with the expected values.

The goal of our application, called AlgoExplorer (a name
chosen to highlight the ability to “explore” the operation of
an algorithm), is to display in graphic and intuitive, and not
simply in tabular way as most debugging applications, struc-
tures data that come in the execution of a program. More
precisely we want to see now graphic instances of the classes
used by a given program are related and connected to each
other in the execution. In many fundamentals of comput-
ing textbooks the instances of classes are often represented
as rectangles containing the values that represent the at-
tributes of it, with arrows representing pointers or variables
that reference other instances, in this way, for example, a
linked list is often represented as a long chain of rectan-
gles linked sequentially together by arrows. AlgoExplorer
uses this method of visualization, thus it have a debugging
function and also a teaching function because it allows to
represent data structures in the way we are accustomed to
imagine objects and pointers. Application is developed in
Java and it is capable of analyzing programs written in that
language.

The methods for the visualization of algorithms and data
structures can be divided into two types:

1. methods through the execution of a program properly
configured generate a not interactive animation of the
algorithm, in which case the animation can also be
exported and viewed with a viewer, which is limited
exclusively to show the output of the animation, re-
gardless of the system that created it;

2. methods that execute the algorithm and are able to vi-
sualize in real time the behavior, allowing end-users to
display animation and to interact with different input
values in the algorithm.

Both of these methods often require preliminary implemen-
tation of the source code of the algorithm that respects some
rules of the application that execute the program; AlgoEx-
plorer is an application that belongs to the second type de-
scribed but the developer of algorithm don’t use any particu-

Page 1

AlgoExplorer: a dynamic data structures viewer for Java

Pier Paolo Ciarravano (ppciarravano@gmail.com)

lar rule for the creation of the algorithm or external libraries
and utilities in addition to those for the algorithm. Algo-
Explorer can be used as an application for debugging Java
programs and for educational purposes for the study of al-
gorithms well known in the literature, allowing interaction
with several inputs in order to facilitate understanding; it
also allows the export of the animation appears in the exe-
cution of the algorithm, so that you can display it using a
standard browser equipped with Adobe Flash Player plug-in
[2].

2. RELATED WORK

AlgoExplorer, of course, is not the only application that
deals with the graphical display of data structures manipu-
lated by the algorithms. It is therefore considered appropri-
ate, at this point, analyze and compare with AlgoExplorer
three other applications that deal with the similar type of
visualization. The applications are:

e The Lightweight Java Visualizer (LJV) [21] [15]
e jGRASP [20] [14]
o JAVAVIS [22]

LJV is a simple tool for displaying data structures in Java.
The application uses the Java Reflection for introspection of
the data and the Graphviz library [7] for graphical display
of the graph representing examined data structures. LJV
does not have any graphical user interface and developer
of the algorithm integrate the library calls of LJV to allow
interaction. The output of LJV is a file text description
of the graph, which then will be draw from the Graphviz
library.

JGRASP is a lightweight development environment, imple-
mented entirely in Java and designed for the automatic dis-
play of data structures for educational purposes. JGRASP
allows the development of programs directly from its GUI
(quite complex) and the visualization intuitively the tradi-
tional data structures such as stacks, queues, linked lists,
trees and hashtable. jGRASP use JDI for introspection of
data structures.

JAVAVIS is a program useful to the understanding and teach-
ing of object-oriented programming, it allows you to mon-
itor the execution of a program and to see its behavior
through two UML diagrams: sequence diagrams and ob-
ject diagrams. It uses JDI and the source code to allow the
display as a normal debugging of an IDE for development.

AlgoExplorer, however, is an application specifically designed
for displaying data structures that play a role in program im-
plementation; it uses a custom graphical environment and
it does not force the programmer to comply with specific
rules or to use special libraries. However jGRASP is also
a fairly complex development environment in the first ap-
proach and the visualization is restricted to certain types of
data structures; instead AlgoExplorer is simple, usable and
limited to the visualization of data structures, it is capable
of visualize all memory status even if it does not visualize in
an intuitive way traditional data structures such as arrays.

In Table 1 we compare the characteristics of the examined
programs and AlgoExplorer.

3. KEY FEATURES

The application designed for the Java language, must visu-
alize, in a graphic display, the state of variables and objects
managed and manipulated by the algorithms. The following
examples show, with some assumptions for the application,
what are the views we want to achieve :

e Example 1:

We have an algorithm that operates an order on a
linked list, we want visualize how the algorithm oper-
ates on the elements of the list and how the elements
of the list are related to each other in sequential steps
of the execution.

e Example 2:

We have an algorithm that handles AVL trees, we want
visualize how the algorithm operates on the nodes and
how occur any rotational at insertion or deletion of a
node.

e Example 3:

We have a program that implements the Dijkstra’s al-
gorithm on a graph; the graph is displayed in graphic
and it display at any significant interaction of the algo-
rithm the choices made by the algorithm on the same
graph.

The basic requirement is that the algorithms are not written
using specifically rules or API, the developer don’t imple-
ment any particular creation rule or use external libraries
as well as instructions and utilities for the algorithm itself.
The application must allow the visualization of relations be-
tween all objects and variables in the algorithms execution
points chosen on the source code, so as to allow examina-
tion the values of the variables chosen and the examination
of relationships between objects of classes that you want to
view. The application must allow the study of algorithms
using a GUI (Graphical User Interface) easily usable. The
portability of the application is granted by the Java SE 5
(Sun JDK 1.5 or later) [11], without using native libraries,
so AlgoExplorer can be run on any operating system which
has this version of Java. It would be desirable to be able
to export animations generated and then display them in a
web based, accompanied by explanatory text that describes
the steps.

4. IMPLEMENTATION

AlgoExplorer consists of two distinct phases of user interac-
tion: the first phase include the classes import of the pro-
gram you want to perform, the choice of the class you want
view and the choice of the variables to be inspected; the sec-
ond phase include the control of the program you want to
perform and visualization of data structures that have been
chosen for display.

In the first phase, AlgoExplorer allows the import of the
binary and optionally source Java classes. The imported

Page 2

AlgoExplorer: a dynamic data structures viewer for Java

Pier Paolo Ciarravano (ppciarravano@gmail.com)

Table 1: Compare of examined programs and AlgoExplorer

LJV | jGRASP | JAVAVIS | AlgoExplorer
Interactive animation that follows the runtime behavior X X X
Basic instances visualization of data structures X
Ability to export the animation X
Algorithm must follow strict rules and implement specific APIs X
Displaying of the animation with a Web browser X
Needs the source code of the algorithm X X X

<
L

Class: dis.algoexplorer test. Aviode : "10"

Field Name Value

et 1ame

Figure 1: Execution and monitoring GUI

classes are displayed in a tree structure that highlights pack-
ages; the classes that contain a main method are highlighted
in a different way, so they can be chosen for the execution.
For each class you can view the source code if imported,
set any breakpoints in which you want AlgoExoplorer dis-
plays the status of objects and variables, choose whether
instances of the class will be shown and which attributes
will be the label of the instance and choose the attributes
that can be inspected in order to know the value breakpoint
identified in different source code. If you have not entered
any breakpoints in the source code, the visualization of the
data structures will be done only after the main method of
the executed program. Once you have made your choices
you can execute a class containing the main method. You
can set program parameters to pass to main method and
any options for the Java Virtual Machine that will run it.

In the second phase (Figure 1), AlgoExplorer allows the vi-
sualization of data structures. In a special area the user in-
terface displays the instances of choices classes and you can
choose the display scale and automatic layout that will be
used to display the data structures (tree or graph). You can
also control the program execution: a program is initially
suspended and using a special command it can be started;
for each breakpoints on the source code, execution stops it-
self to view the status of instances of the classes selected
for display and when you want you can continue to run.
When execution is suspended, you can click the visualized
instances to inspect the values of the attributes selected for
inspection as the first phase of AlgoExplorer.

4.1 Module of workspace configuration

On AlgoExplorer starting you just get a window that shows
the configuration interface of the workspace. The workspace
is a binary set of classes and their source code, so the first re-
quired thing is the binary Java class loading and source code
of the algorithms (or programs) that want to be analyzed.

The inclusion of the directory containing the binary byte-
code file is mandatory, while the inclusion of the file folder
containing the source file is optional. AlgoExplorer can work
even on programs that haven’t their source code, in this case,
however, you will not be able to set breakpoints on source
code and the visualization of chosen data structures will be
only at the end of the program. AlgoExplorer visits recur-
sively the specified directory to search for binary class; this
search is not simply limited to identify a class when it is a bi-
nary file with “*.class” extension, but it is actually verified if
the file is compliant with Java bytecode files. AlgoExplorer
uses the Apache Byte Code Engineering Library API [4] that
allow the analysis, creation and manipulation of binary files
representing compiled bytecode classes; the bytecode files
are analyzed to search for public and private attributes, for
the name of the source file references the bytecode file and
for the integers represents the numbers of lines of source code
actually executive of the source file. We use this procedure
rather than the Java Reflection API (java.lang.reflect) [10],
for many reasons: first because by using Java Reflection
you have to read the class that you want to consider using
the static Class.forName method; in this way, the class is
loaded in the running Java Virtual Machine (JVM), which
reads the bytecode and makes it available for execution as
well as any other class used by the JVM and any external
reference or dependence of the class is loaded. Then, us-
ing this method, if you look at a class that has a reference
to a class not in JVM classpath, you might be incurred in
a ClassNotFoundFException exception type; this side effect
is not generated by the Apache Byte Code Engineering Li-
brary API, which instead simply read the class bytecode
just like any file, without investigating the dependencies.
Furthermore the Java Reflection was not used because this
technique can’t know the private attributes names or private
class methods names; the Apache Byte Code Engineering Li-
brary API have the ability to know these names and also it is
capable of knowing the integers representing the numbers of
lines of source code actually executive of the source file and
also the name of the source file: this is possible on any class
compiled using the option “g: none”in the javac command.
These abilities are of considerable interest for AlgoExplorer
because we are interested also to analyze these references.

AlgoExplorer stores in instances of class ClassDescriptor the
attributes names and their types and in instances of class

Page 3

AlgoExplorer: a dynamic data structures viewer for Java

Pier Paolo Ciarravano (ppciarravano@gmail.com)

SourceDescriptor the name of the source and the integers
representing the numbers of lines in executive source code;
AlgoExplorer uses these information to allow you the choice
of variables inspect at run time. Afterwards AlgoExplorer
visit the files bytecode of the classes, it presents the packages
tree, where the main classes are highlighted appropriately.

When you select a class in the packages tree, AlgoExplorer
presents the class source code, if it is available, and it also
presents the visualization settings of the class instances.
You can choose to visualize class instances in different color
and you can chose also the class attributes to display; if
you don’t choose any attribute for the instance label, it
will be generated using the toString method. You can in-
sert or remove breakpoints in the source code, you can
insert breakpoints only on lines of code marked as exe-
cutable; they are identified by the Apache Byte Code En-
gineering Library API using getLineNumberTable() method
in class org.apache.bcel.classfile. LineNumberTable. AlgoEx-
plorer show the differences of the state of instances only at
breakpoints execution and at the end of main method. The
settings you made are saved on instances of ClassDescriptor
and SourceDescriptor classes.

Once you have made the visualization choices you can start a
main method using “Run” command in context menu of the
packages tree: you can specify program arguments and JVM
options, such as memory allocated for the heap or classpath
setting of external libraries.

4.2 Programs introspection with the use of

Java Debug Interface (JDI)

We chose to use the Java Debug Interface API(JDI) [8] to
allow AlgoExplorer to examining instances of classes at ex-
ecution time. JDI is a Java API (part of Java Platform De-
bugger Architecture (JPDA) [9]) that allows introspection
of the states of the JVM, classes, arrays, interfaces, and in-
stances of primitive types; it also provides control of the
JVM execution, the threads control and creation, the brak-
points control, the exceptions notify and the class loader
control. All application variables (classes instances, primi-
tive types, arrays) can be inspected through JDI interface,
which automatically assigns to each instance a unique ID;
furthermore you can also know all references instances of
some instance so you can know whether instances are con-
tained in array, Vector, List, Hashtable or an application
class. In Figure 2 there is the JPDA diagram.

Looking at this interface we show the follow features:

e Easy to use, although poorly documented by SUN (Or-
acle) (there is only just Javadoc API and few examples
of application code.)

e Portability on any platform (it is present on SUN JRE
and each JVM issued by other vendors must implement
it).

e [t allows the introspection of any variable, even arrays.

e It identify each instance with a unique ID and it re-
turns in a simple way the objects that reference some
instance.

Components Debuggers Interface
debuggee
Virtual
Machine
JVMDI (Java VM Debug Interface)
back end
(native)
i
L
c channel i JDWP (Java Debug Wire Protocol)
'
'
'
front end
JDI (Java Debug Interface)
user interface
debugger
Figure 2: Java Platform Debugger Architecture

(JPDA) diagram

4.3 Module of programs introspection
Afterwards the run of a main method, AlgoExplorer presents
a new window that represents the visualization environment
of execution, monitoring and control of the program that
you want analyze. In AlgoExplorer the Tracer class and
the InspectThread class deal with the execution and control
of the programs. In Figure 3 we present the AlgoExplorer
architecture diagram and in Figure 4 we present the intro-
spection logic class diagram.

The class Tracer is responsible to initialize and
prepare the JDI interface and it instances the
com.sun.jdi. VirtualMachine class that will create a new
JVM under the JDI control. The Tracer class also deals
with initialize an instance of the InspectThread class, this
is the true heart of AlgoExplorer introspection programs
logic.

JDI uses event-driven architecture, so the Inspect-
Thread constructor initializes the events listeners you
want to go to observe; first of all it initializes an
event listener on com.sun.jdi.event. MethodFExitEvent and
on com.sun.jdi.event. ClassPrepareEvent. The ClassPrepa-
reEvent event sets a exclusion filter for the event Method-
EzitEvent if the class is not chosen for visualization. The
implemented MethodExitEvent event catchs all constructors
of new instances: in this way AlgoExplorer can trace all
initialized instances, it stores this informations in a In-
stanceDescriptor object.

The InspectThread class manages the events queue handled
by JDI. JDI permits to suspend the execution of analyzed
program when event occurs; we has chosen to manage all
the events in this suspended mode to prevent the overlap of
the events, furthermore, using this mode, is possible manage
the play and suspend of the analyzed program as required
in the specifications.

The ClassPrepareFEvent event is executed for all new in-
stances, the action associated with this event sets the lis-
tener for breakpoints in source code (BreakpointEvent) and

Page 4

AlgoExplorer: a dynamic data structures viewer for Java

Pier Paolo Ciarravano (ppciarravano@gmail.com)

Apache BCEL API

Source Model

Workspace.class
SourceDescriptor.class JDI JVM
ClassDescriptor class
InstanceDescriptor.class
InstanceReference class

Viewer

\

ExplorerGraph .class

Event Handler - >
InspectThread.class

Controller
InspectThread.class

AN

7

Figure 3: AlgoExplorer architecture diagram

sets the listener for attributes that you want to go to inspect
(Modification Watchpoint Event).

On BreakpointEvent event AlgoExplorer executes the up-
dateInstancesReferencesAndLabel method, which analyzes all
instances of InstanceDescriptor type and for each instance,
it updates the label to be displayed and also it updates all
references of the instances using the recursive findReferences
method. The method findReferences visits recursively, up to
a preset and constant number of levels, looking for all objects
that reference the given instance using the JDI referringOb-
jects method of ObjectReference class; each found instance
is stored in a new instance of the InstanceReference class.

Once the method updatelnstancesReferencesAndLabel up-
dated all instances, the renderinstances method of Explor-
erGraph class is executed; it deals with the visualization of
instances and links between them. We have chosen to use
the JGraph [13] API for graphical visualization of object
instances. This library is able to handle the visualization
of complex graphs using the automatic positioning of nodes
with different types of layout (tree or graph). The method
renderInstances monitors changes made in instances and it
makes any updates on the nodes of the graph, furthermore
it check, using isCollected method, if the instance is under
the garbage collection control; an asterisk appears at the
end of the instance label if the instance is under the garbage
collection control. However, you can disable the garbage
collection via the AlgoExplorer settings file.

4.4 Animation export and web viewer

AlgoExplorer allow to generate, through the open source
Adobe Flex SDK [1], animation of its graphical output; the
exported animation allow to see the algorithms operations
for educational purposes even on web pages. AlgoExplorer
enables the user to photograph different instants of interest
in the visualization and add a text comment to each screen,
which can explain the algorithm working. A XML file is
generated through the class XML FEzporter, which describes
instances and their relations as shown in the visualization;
later this XML file is read by the Flex AlgoExplorer viewer
(AlgoExplorerViewer) allowing viewing on any browser with
Flash Player plug-in [2] (supported by most operating sys-
tems: Windows, Mac and Linux). Only AlgoExplorerViewer
was built using Adobe Flex 3 language, which implies that in

the future could be made a viewer who visualizes the XML
file generated by AlgoExplorer using any technology.

4.5 Evaluation and performance

We used the Java profiling tool VisualVM [12] to analyze
the performance of AlgoExplorer. We didn’t see any perfor-
mance problems due to design choices made and the use of
the resources used by AlgoExplorer is directly proportional
to the resources needed by analyzed programs.

The bottleneck could be the listener on
com.sun.jdi.event. MethodExitEvent event (the applica-
tions under the JDI control are slow if there are frequent
events run by JDI), but it isn’t because it is called only
on the methods of the classes you want to visualize,
this procedure minimizes the slowdown of the analyzed
programs.

S. EXAMPLES

Now we describe some examples of the use of AlgoExplorer
for well-known algorithms, it permit to highlight the pos-
sible uses for the educational interactive understanding of
algorithms.

5.1 Ordered list

We analyzed the ordered list algorithm derived from source
code in [17] and [16], which operates the insertion of items
in an ordered list. The algorithm visit the list until find
a item higher than the item you are entering, so that the
latter is inserted immediately before the element found. The
Figures 5-7 are some screenshots of AlgoExplorer output
visualization in order to highlight the steps performed in
the insertion algorithm.

5.2 AVL balanced tree

We analyzed the algorithm of nodes insert on a AVL bal-
anced tree from source code in [26] and [25]. The Figure 8
is the AlgoExplorer output visualization for the AVL tree.

5.3 Dijkstra’s algorithm

We implemented an algorithm that solves the problem of the
Single Source Shortest Path (SSSP) on a simple and con-
nected graph and with unitary values of nodes represented

Page 5

AlgoExplorer: a dynamic data structures viewer for Java

Pier Paolo Ciarravano (ppciarravano@gmail.com)

Tracer

Workspace 1.1 1.1

vm : VirtualMachine
mainClassName : String

classpath : String

sourcepath : String 1.1
mainArguments : String | 1.1

backgroundColorCell : Color
foregroundColorCell : Color
fieldUseForLabelCell : boolean|
fieldInspect : boolean[]

vmOptions : String
1.1
1.1
InspectThread ey
vmDied : boolean =
connected : boolean
continuousPlay : boolean
intervalPlay : int 0.*
InstanceDescriptor
1.1
objectReference : ObjectReference
uniquelD : long
label : String
fieldsValue : Hashtable<String, String>|
1.1 1.1
0.* 0.*
SourceDescriptor o ClassDescriptor
sourceFileName : String —° me String . 1.1
e sourceFileName : String
packageName : String N
R methods : Method]]
sourcePathName : String .
. 1.1 1.* |fields : Field[]
breakpoints : Set<Integer> e
packageName : String 0.
lineNumbers : int[] -
classSelect : boolean InstanceReference

uniquelD : long
name : String

direct : boolean
parentlD : long

Figure 4: Introspection logic Class diagram

"3" (ID:1053)

nextElament

"4" (1D:1098)

"7" (1D:1063)
"12" (ID:1081)

14" (ID:1149)

Figure 5: Ordered list with 5 elements

"3" (ID:1053) NextElemant

"4 (ID: 1098)
ok
nexEr

"10" (ID:1198)

"7" (ID:1063)

"12" (ID:1081)

nextElement

14" (ID:1149)

NextElement

"3" (ID:1053)

"4" (ID: 1098)

nextElement

HICHED

nextElement

nextElement "12" (ID:1081)
"14" (ID:1149)

Figure 7: Completing the insert of new element

"8 (1D:1051)

"1"(10:1099) | ['3"(m:1120)| ['S' (ID:1109) [7 (] [eraoiiss)] [goaizd] 137159 |

Figure 8: Visualization of a complete AVL tree

a given node, there was also developed a data structure that
transforms an adjacency matrix in a graph with objects, it
Figure 6: Creation of an element with value set to allows intuitive visualization in AlgoExplorer. The Figures
“10” 9-12 are some screenshots of AlgoExplorer output visualiza-
tion using different inputs.

by adjacency matrix. We used the classical Dijkstra’s algo-
rithm [19]; the algorithm returns the shortest path tree from

Page 6

AlgoExplorer: a dynamic data structures viewer for Java

Pier Paolo Ciarravano (ppciarravano@gmail.com)

s
s ,

"g" (1D:1215]

1" (1D:1134)

-~

g™ (10:1209]

1
!
|
1
!
]
!

3" (1D:1218)

"5 (ID:1206)

Figure 12: Example of a graph with 10 nodes, fully connected and a shortest path tree extracted from a node

endes —— =~
__ﬂicd”‘ = \%\ =®Ncks
—_ \' = -
e %
: = acence, _ v |
& ol
< &
é‘l /")
& .
/ 59“/ 1
(O 0l — _scences / !
T N (D175 — —2diAcendies

Figure 9: The graph used in the example

"3" (1D:1173)

s T
b ~5
> et

%

'z
=

N

"4" (ID:1180)

"5" (ID:1183)
Y

3 el
4 W \'6',;\
y 4
['z"o:tis9)] ['0"(D:1tes)] ["e"{(1D:1192)]

Figure 10: Shortest path tree generated from the
node “3”

"5 (ID:1209)
“,
~

-

"g6" (ID:1218)

pip

W
-~

-

T
-

5

s

1z =l =
& 5 =3
[0 (D:1224) | [z (1D:1227)] "1" (ID:1221)

Figure 11: Shortest path tree generated from the
node “5”

6. SUMMARY AND FUTURE WORK

AlgoExplorer highlighted the strengths of the approach used:
it is very simple, usable and it fully satisfies all key features
required and described at the beginning of this document.
From the analysis of the examples, we can assign a teach-
ing validity to AlgoExplorer because it allows you to easily
study and understand complex algorithms.

The use of JDI has made possible a interference-free of an-
alyzed programs; this procedure may in later versions of
AlgoExplorer also be used to visualize in an intuitive and
automatic way some data structures that aren’t currently

Page 7

AlgoExplorer: a dynamic data structures viewer for Java

Pier Paolo Ciarravano (ppciarravano@gmail.com)

displayed in intuitive graphic (array).

AlgoExplorer could be integrated into an IDE (Integrated
Development Environment) such as Eclipse [6], to allow a
direct visualization and execution of the algorithms at the
same time the developer designing the code.

Finally the web viewer, for visualizations produced by Al-
goExplorer, allows a valid educational approach to under-
standing the algorithms operations, this fully satisfies our
goals also in a web context.

7.

AVAILABILITY

AlgoExplorer is released under GNU General Public License
Version 3(GPLv3). You can get the source code and binaries
from the url:

http://todo [3]

8.
1]

[16]

REFERENCES

World Wide Web electronic publication.
http://opensource.adobe.com/wiki/-

display /flexsdk /Flex+SDK.

Adobe flash player. World Wide Web electronic
publication.
http://www.adobe.com/products/flashplayer/.
Algoexplorer. World Wide Web electronic publication.
http://todo/.

Apache byte code engineering library. World Wide
Web electronic publication.

Data structure and algorithm visualization library for
computer science education. World Wide Web
electronic publication. http://wiki.algoviz.org.
Eclipse ide. World Wide Web electronic publication.
http://www.eclipse.org/.

Graphviz - graph visualization software. World Wide
Web electronic publication. http://www.graphviz.org.
Java debug interface (jdi) api. World Wide Web
electronic publication.
http://download.oracle.com/javase/6 /-
docs/jdk/api/jpda/jdi/index.html.

Java platform debugger architecture (jpda). World
Wide Web electronic publication.
http://download.oracle.com/javase/6 /-
docs/technotes/guides/jpda/index.html.

Java reflection api. World Wide Web electronic
publication. http://download.oracle.com/javase/-
tutorial /reflect /index.html.

Java se downloads. World Wide Web electronic
publication. http://www.oracle.com/technetwork/-
java/javase/downloads/index.html.

Java visualvm. World Wide Web electronic
publication. https://visualvm.dev.java.net/.

Jgraph. World Wide Web electronic publication.
http://www.jgraph.com/jgraph5.html.

jgrasp. World Wide Web electronic publication.
http://www.jgrasp.org.

The lightweight java visualizer (1jv). World Wide Web
electronic publication.
http://www.cs.auckland.ac.nz/ j-hamer/LJV.html.
D. A. Bailey. Java data structures package. World

(17]

(18]

(19]

(20]

(21]

(22]

23]

(24]

(25]

(26]

Page 8

Wide Web electronic publication.
http://www.cs.williams.edu/ bailey/-
JavaStructures/Software.html.

D. A. Bailey. Java Structures: Data Structures in Java
for the Principled Programmer. McGraw-Hill, Inc.,
New York, NY, USA, 2001.

M. H. Brown and R. Sedgewick. A system for
algorithm animation. SIGGRAPH Comput. Graph.,
18(3):177-186, 1984.

A. Creak. Edsger w. dijkstra. SIGPLAN Not.,
37(12):14-16, 2002.

J. H. Cross, II, T. D. Hendrix, D. A. Umphress, L. A.
Barowski, J. Jain, and L. N. Montgomery. Robust
generation of dynamic data structure visualizations
with multiple interaction approaches. Trans. Comput.
Educ., 9(2):1-32, 2009.

J. Hamer. Visualising java data structures as graphs.
In ACE °04: Proceedings of the sizth conference on
Australasian computing education, pages 125-129,
Darlinghurst, Australia, Australia, 2004. Australian
Computer Society, Inc.

R. Oechsle and T. Schmitt. Javavis: Automatic
program visualization with object and sequence
diagrams using the java debug interface (jdi). In
Revised Lectures on Software Visualization,
International Seminar, pages 176-190, London, UK,
2002. Springer-Verlag.

L. P. Programmers and R. Baecker. Appears in
software visualization: Programming as a multimedia
experience. mit press, 1998, 369-381. In Software
Visualization: Programming as a Multimedia
Ezxperience, chapter 24, pages 369-381. The MIT
Press, 1998.

D. S. RM. Baecker. 30 minute colour sound film,
dynamic graphics project. World Wide Web electronic
publication, 1981.
http://www.kmdi.utoronto.ca/rmb/-
video/sos_recap.mov,
http://www.kmdi.utoronto.ca/rmb/-
video/sos_dotclouds.mov.

M. A. Weiss. Code of data analysis and algorithm
analysis in java. World Wide Web electronic
publication.

http://users.cis.fiu.edu/ weiss/dsaajava2/code/.

M. A. Weiss. Data Analysis and Algorithm Analysis in
Java (2nd Edition). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2005.

